GCSE

Mathematics B (Linear)

Component J567/04: Mathematics Paper 4 (Higher)
General Certificate of Secondary Education

Mark Scheme for November 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\cdots	Correct
3	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
$\bigcirc \mathrm{SC}$	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B, etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

1. M marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage. SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ${ }^{\prime} 5^{2}+7^{2}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working after correct answer obtained and applies as a default.
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. In questions with no final answer line, make no deductions for wrong work after an acceptable answer (ie isw) unless the mark scheme says otherwise, indicated by the instruction 'mark final answer'.
7. In questions with a final answer line following working space,
(i) if the correct answer is seen in the body of working and the answer given on the answer line is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation \checkmark next to the correct answer.
(ii) if the correct answer is seen in the body of working but the answer line is blank, allow full marks. Place the annotation \checkmark next to the correct answer.
(iii) if the correct answer is seen in the body of working but a completely different answer is seen on the answer line, then accuracy marks for the answer are lost. Method marks could still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation x next to the wrong answer.
8. In questions with a final answer line:
(i) If one answer is provided on the answer line, mark the method that leads to that answer.
(ii) If more than one answer is provided on the answer line and there is a single method provided, award method marks only.
(iii) If more than one answer is provided on the answer line and there is more than one method provided, award zero marks for the question unless the candidate has clearly indicated which method is to be marked.
9. In questions with no final answer line:
(i) If a single response is provided, mark as usual.
(ii) If more than one response is provided, award zero marks for the question unless the candidate has clearly indicated which response is to be marked.
10. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
11. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
12. Ranges of answers given in the mark scheme are always inclusive.
13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

MARK SCHEME

Question			Answer	Marks	Part marks and guidance	
1	(a)		20.9	2	Mark final answer B1 for 20.8[8] or 20.87[7...] or for answer 5.9 or for their answer to more than 1dp correctly rounded to 1dp	Condone answer 20.8 for B1 Both unrounded and rounded value must be seen
	(b)		90	1		Condone answer $90{ }^{3}$
2	(a)		$x>3$	2	Mark final answer M1 for $6 x>23-5$ or better OR B1 for answer 3 or >3 or $x \ldots 3$ with $=$ or any incorrect inequality symbol or for $6 \times 3+5>23$ as final answer	Condone use of = or incorrect inequality symbol for M1
	(b)		$[r=] \frac{p+7}{3}$	2	Mark final answer $\mathbf{M 1}$ for $3 r=p+7$ or $\frac{p}{3}=r-\frac{7}{3}$ OR SC1 for answer $p+7 \div 3$ or $\frac{p-7}{3}$ or $\frac{p}{3}+7$	
3	(a)	(i)	2 1 5 8 3 2 4 4 6 8 4 0 1 2 3 5 5 8 5 2 3 7 6 0 2	3	M2 for ordered diagram with one error, omission or extra or for unordered diagram with all 20 values in correct rows and no extras OR M1 for [un]ordered diagram with no more than two errors, omissions or extras	Give bod for unclear numbers if crossed out as part of median calculation If two diagrams, mark better

Question		Answer	Marks	Part marks and guidance	
	(ii)	41.5 or $41 \frac{1}{2}$	2	M1 for 41 and/or 42 as answer or identified in table or working or for 1.5 as answer or figs 415 as answer	e.g. accept 1 and/or 2 ringed in 40 row in table for M1 or ordered list of at least first/last 11 values But MO for $15824 \ldots$ without further clarification
	(iii)	$\frac{2}{5}$	2	Mark final answer B1 for $\frac{8}{20}$ oe seen OR M1 for their fraction simplified fully	$\frac{2}{5}=0.4 \text { scores B1 only }$ Must see both unsimplified and simplified fraction
(b)		26.5	4	B1 for midpoints 17.5, 22.5, 27.5, $32.5,37.5$ soi condone one error or omission M1 for $18 \times 17.5+34 \times 22.5+$ $32 \times 27.5+26 \times 32.5+10 \times 37.5$ condone one error M1 dep for their $3180 \div$ their 120	nfww FT their 'midpoints' where each midpoint is any point in the interval or an endpoint $315+765+880+845+375 \text { or }$ 3180 seen implies M2 Attempt to divide their sum by their 120 implied by correct answer to division after total seen
(c)	(i)	13:25	2	M1 for 650: 1250 or better seen or for answer 25 : 13 OR SC1 for answer $\frac{13}{25}$	

Question		Answer	Marks	Part marks and guidance	
5	(a)	Correct octagon, with all vertices on circle	2	B1 for 45° or 135° seen or for octagon with at least three angles from centre of 45° or for 8 points plotted on circle within tolerance	Tolerance for angles $\pm 2^{\circ}$
	(b)	150	2	$\text { M1 for } 360 \div 12 \text { or } \frac{(12-2) 180}{12}$	M1 implied by 30 seen or may be part of calculation
6	(a)	Rotation or enlargement $\begin{aligned} & 180^{\circ} \text { or }[\mathrm{SF}]-1 \\ & (3,1) \end{aligned}$	1	No other transformation Must be consistent with given transformation	Eg rotate then $\left[\begin{array}{c}6 \\ -3\end{array}\right]$ loses 1st mark Centre given as vector rather than coordinates is not a second transformation
	(b)	Reflection in x-axis oe	3	B2 for vertices $(-3,1),(-6,1),(-6,2),(-4,2),(-4,3)$, $(-3,3)$ plotted or for reflection in x-axis implied by imprecise description OR B1 for reflection stated	Do not penalise for restatement of first transformation eg use of flip in place of reflection
7	(a)	5516.22	3	M2 for 5340×1.033 oe OR M1 for 5340×0.033 oe	M2 implied by 5516 M1 implied by 176.22 seen
	(b)	2450	3	M2 for 2597 $\div 1.06$ oe OR M1 for 1.06 oe used	Not for just 106\% seen

Question		Answer	Marks	Part marks and guidance	
8	(a)	Correct Pythagoras statement with hypotenuse 6 or sides 3 $s^{2}+s^{2}=6^{2} \text { or } s^{2}=3^{2}+3^{2}$ Simplified statement for square side $s^{2}=18$ Concluding statement $s=\sqrt{18}=4.24[2 \ldots]$	M1 M1 A1	Alternative method: M1 for use of 45° with trigonometry $\mathbf{M 1}$ for $\sin 45=\frac{s}{6}$ soi A1 for $s=6 \sin 45=4.24[2 \ldots]$ After 0 awarded SC2 for $4.24^{2}+4.24^{2}=5.99[. .]^{2}$ which rounds to 6 soi Or SC1 for use of Pythagoras soi	accept any letter in place of s or equivalent using cosine
	(b)	36.3 to 36.8	5	M1 for $\pi \times 3^{2}$ And M1 for 4.24^{2} And M1 for (their '28.3' - their '18') And M1 for their 'shaded area' \div their '28.3' or their 'square area' \div their '28.3'	Circle area $=28.3$ Square area $=18$ or $17.9[\ldots]$ Shaded area $=10.3$

Question		Answer	Marks	Part marks and guidance	
9		140 nfww	5	M2 for $a+2 a+2 a+40+a+20=360 \text { oe }$ OR B1 for any three of $a, 2 a, 2 a+40$, a+20 oe soi or angles in quadrilateral $=360$ soi AND M2FT for $a=50$ OR M1FT for $6 a=360-60$ or $m a=360-n$ AND M1FT for answer $2 \times$ their ' a ' +40 Max 4 marks if answer incorrect	accept any letter used in place of a FT solution of their ma $+n=360$ or 180 rearrangement of their equation to isolate algebraic terms FT their stated value for angle a
10	(a)	Correctly completed box plot	3	B1 for min 158, max 186 indicated B1 for LQ at 166, UQ at 180 indicated B1 for median 174 indicated Max 2 marks if box plot not complete	half square accuracy

Question		Answer	Marks	Part mar	nd guidanc		
	(b)	Girls shorter on average, median 164 compared with 174 for boys Boys heights are more varied, IQR is 14 compared with 10 for girls	3	B1 for a comparison without relevant statistic B1 for a correct statistic for girls stated	See exemplars For 3 marks one comparison must be related to IQR or range, and the other to median with the two relevant statistics for each stated and at least one comment must interpret context		
						B	G
					Min	158	150
					Max	186	178
					Median	174	164
					IQR	14	10
					LQ	166	158
					UQ	180	168
					Range	28	28
11	(a)	$y=2 x-3$ oe	2	B1 for $2 x-3$ oe or $y=m x-3$ oe $(m \neq 0)$ or $y=2 x+c$ oe			
	(b)	$\begin{aligned} & x \leq 3 \\ & y \leq 2 x-3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	FT their $y=m x+c$ from (a)	condone use of <		
12	(a)	$\begin{aligned} & \frac{8.2}{\cos 32}=9.66[\ldots] \text { or } \\ & \text { or } \frac{8.2}{\cos 32}=9.7 \end{aligned}$	2	$\mathbf{M 1}$ for $\cos 32=\frac{8.2}{\text { AC }}$ oe	accept alternative for AC eg x or 9.7 Accept complete equivalent method for 2 marks, eg use of sin 58 or use of \tan leading to [CD =] 5.12[...] seen then Pythagoras A circular argument starting with 9.7 scores max M1 if correct trig statement seen		

Question		Answer	Marks	Part marks and guidance	
	(b)	6.19 to 6.22	3	M2 for $\frac{9.7 \sin 37}{\sin 110}$ OR M1 for $\frac{B C}{\sin 37}=\frac{9.7}{\sin 110}$ oe	accept alternative for $B C$ eg x or blank
13	(a)	$x=2.5 \text { or } 2 \frac{1}{2} \text { or } \frac{5}{2}$	4	nfww M1 for $18 x-3-4 x-2$ oe M1 for multiplying both sides by 6 M1dep for correct collection of x terms and numbers in their $p x+q=r$ leading to $a x=b$ M1 for $x=\frac{b}{a}$ after $a x=b$ seen Max 3 marks if answer is incorrect	At least three terms correct Dependent on at least M1 $14 x=35$ accept unsimplified improper fraction or decimal correct to at least 3sf

Question		Answer	Marks	Part marks and guidance	
	(b)	1.44 and -0.84	3	M2 for $\frac{3 \pm \sqrt{3^{2}-4 \times 5 \times-6}}{2 \times 5}$ or $\frac{3 \pm \sqrt{129}}{2 \times 5}$ or one solution correct to 2 dp or both solutions rounded or truncated to at least 2dp OR M1 for use of formula with two errors or one solution to more than 2 dp	Condone one error in formula for M2, examples of one error: - a substituted wrongly twice - short division line - one error in quoted formula For completing the square method award M2 for $\left(x-\frac{3}{10}\right)^{2}=\frac{6}{5}+\left(\frac{3}{10}\right)^{2} \mathbf{o e},$ condoning one error Exact solutions: $1.43578 \ldots,-0.83578 \ldots$
14	(a)	12, 6, 9, 18, 15	3	B2 for 3 correct frequencies OR B1 for 1 correct frequency or for frequency density \times correct interval width attempted or for all frequency densities linked with correct interval	$0.8,0.4,0.3,0.9,0.75$
	(b)	No, oldest person could be anywhere in range $80<a \leq 100$	1		see exemplars Response must include reference to age range
15	(a)	Parabola with minimum at ($-2,0$)	1		Clear intention of translation to left
	(b)	113° and 247°	2	B1 for one correct or for two values, both >90, that sum to 360	Accept answers rounding to these

Question	Answer	Marks	Answer
16	Fully correct calculation of time to fill tank in minutes and seconds showing use of max capacity \div min rate. Each calculation shown and clearly identified	5	```eg Maximum capacity =8650, so fill to 0.95 }\times8650=8217. Minimum flow rate = 735 Maximum time = 8217.5 \div 735=11.18 Maximum time = 11 minutes 11 seconds```
	Complete calculation of time in minutes to fill tank to 95% of capacity with each calculation shown using at least one of upper bound of capacity or lower bound of flow rate	4-3	Complete calculation of time to fill tank to 95% of capacity without use of bounds, leading to answer 11.04 minutes or 11 minutes 2 seconds OR Complete calculation of time in minutes to fill tank to 95% of capacity with incorrect use of bounds OR Correct result for calculation A using upper bound of capacity or for calculation B using lower bound of flow rate
	Correct upper and lower bounds for capacity and flow rate seen OR Correct result for calculation A or B using their capacity and/or rate	2-1	At least two correct values of bounds seen OR Attempt at calculation A, B or C
	Required calculations A Calculation of 95% of capacity B Calculation of time $=$ capacity \div rate C Conversion of time in minutes to minutes and seconds		Eg 0.95×8600 [= 8170] Eg $8600 \div 740$ [$=11.62 \ldots$...] Eg 11.04 minutes $=11 \mathrm{~min}$ and 0.04×60 seconds
	Bounds		For 4 marks or less allow use of eg 8649.9[9] etc for bounds

Question		Answer	Marks	Part marks and guidance	
17	(a)	Correct Pythagoras statement leading to $H=\sqrt{119}+5=15.9[0 \ldots]$ or 15.91	3	M1 for $5^{2}+h^{2}=12^{2}$ or better B1 for $\sqrt{119}$ seen M1 for $10.9+5=15.9[0 . .$.$] or 15.91$	accept 10.91 or $10.9[\ldots]$ for $\sqrt{119}$ or $\sqrt{119}+5=15.9[0 \ldots]$ or 15.91
	(b)	546.8 to 547.4	4	B1 for stating or using both correct volume formulae M1 for $\frac{1}{3} \pi \times 5^{2} \times 10.9$ M1 for $\frac{2}{3} \pi \times 5^{3}$ M1 for their ' 285.4 ' + their ' 261.8 ' Max 3 marks if answer incorrect	Must be hemisphere formula implied by 285.[...] seen implied by 261.[...] seen Must be from attempt to use correct two formulae

APPENDIX

Exemplar responses for Q.14(b)

Response	Mark
No there is a 20 gap range for which patient could have age	$\mathbf{1}$
No, it's a range from 80 to 100	$\mathbf{1}$
No, it's between 80 and 100	$\mathbf{1}$
No, he doesn't know the exact age	$\mathbf{0}$
Yes, highest number on graph is 100	$\mathbf{0}$
No, it could be any lower than 99	$\mathbf{0}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

